Balanced polygamma function

In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor Hugo Moll.[1]

It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.

Definition

The generalized polygamma function is defined as follows:

ψ ( z , q ) = ζ ( z + 1 , q ) + ( ψ ( z ) + γ ) ζ ( z + 1 , q ) Γ ( z ) {\displaystyle \psi (z,q)={\frac {\zeta '(z+1,q)+{\bigl (}\psi (-z)+\gamma {\bigr )}\zeta (z+1,q)}{\Gamma (-z)}}}

or alternatively,

ψ ( z , q ) = e γ z z ( e γ z ζ ( z + 1 , q ) Γ ( z ) ) , {\displaystyle \psi (z,q)=e^{-\gamma z}{\frac {\partial }{\partial z}}\left(e^{\gamma z}{\frac {\zeta (z+1,q)}{\Gamma (-z)}}\right),}

where ψ(z) is the polygamma function and ζ(z,q), is the Hurwitz zeta function.

The function is balanced, in that it satisfies the conditions

f ( 0 ) = f ( 1 ) and 0 1 f ( x ) d x = 0 {\displaystyle f(0)=f(1)\quad {\text{and}}\quad \int _{0}^{1}f(x)\,dx=0} .

Relations

Several special functions can be expressed in terms of generalized polygamma function.

ψ ( x ) = ψ ( 0 , x ) ψ ( n ) ( x ) = ψ ( n , x ) n N Γ ( x ) = exp ( ψ ( 1 , x ) + 1 2 ln 2 π ) ζ ( z , q ) = Γ ( 1 z ) ln 2 ( 2 z ψ ( z 1 , q + 1 2 ) + 2 z ψ ( z 1 , q 2 ) ψ ( z 1 , q ) ) ζ ( 1 , x ) = ψ ( 2 , x ) + x 2 2 x 2 + 1 12 B n ( q ) = Γ ( n + 1 ) ln 2 ( 2 n 1 ψ ( n , q + 1 2 ) + 2 n 1 ψ ( n , q 2 ) ψ ( n , q ) ) {\displaystyle {\begin{aligned}\psi (x)&=\psi (0,x)\\\psi ^{(n)}(x)&=\psi (n,x)\qquad n\in \mathbb {N} \\\Gamma (x)&=\exp \left(\psi (-1,x)+{\tfrac {1}{2}}\ln 2\pi \right)\\\zeta (z,q)&={\frac {\Gamma (1-z)}{\ln 2}}\left(2^{-z}\psi \left(z-1,{\frac {q+1}{2}}\right)+2^{-z}\psi \left(z-1,{\frac {q}{2}}\right)-\psi (z-1,q)\right)\\\zeta '(-1,x)&=\psi (-2,x)+{\frac {x^{2}}{2}}-{\frac {x}{2}}+{\frac {1}{12}}\\B_{n}(q)&=-{\frac {\Gamma (n+1)}{\ln 2}}\left(2^{n-1}\psi \left(-n,{\frac {q+1}{2}}\right)+2^{n-1}\psi \left(-n,{\frac {q}{2}}\right)-\psi (-n,q)\right)\end{aligned}}}

where Bn(q) are the Bernoulli polynomials

K ( z ) = A exp ( ψ ( 2 , z ) + z 2 z 2 ) {\displaystyle K(z)=A\exp \left(\psi (-2,z)+{\frac {z^{2}-z}{2}}\right)}

where K(z) is the K-function and A is the Glaisher constant.

Special values

The balanced polygamma function can be expressed in a closed form at certain points (where A is the Glaisher constant and G is the Catalan constant):

ψ ( 2 , 1 4 ) = 1 8 ln 2 π + 9 8 ln A + G 4 π ψ ( 2 , 1 2 ) = 1 4 ln π + 3 2 ln A + 5 24 ln 2 ψ ( 3 , 1 2 ) = 1 16 ln 2 π + 1 2 ln A + 7 ζ ( 3 ) 32 π 2 ψ ( 2 , 1 ) = 1 2 ln 2 π ψ ( 3 , 1 ) = 1 4 ln 2 π + ln A ψ ( 2 , 2 ) = ln 2 π 1 ψ ( 3 , 2 ) = ln 2 π + 2 ln A 3 4 {\displaystyle {\begin{aligned}\psi \left(-2,{\tfrac {1}{4}}\right)&={\tfrac {1}{8}}\ln 2\pi +{\tfrac {9}{8}}\ln A+{\frac {G}{4\pi }}&&\\\psi \left(-2,{\tfrac {1}{2}}\right)&={\tfrac {1}{4}}\ln \pi +{\tfrac {3}{2}}\ln A+{\tfrac {5}{24}}\ln 2&\\\psi \left(-3,{\tfrac {1}{2}}\right)&={\tfrac {1}{16}}\ln 2\pi +{\tfrac {1}{2}}\ln A+{\frac {7\zeta (3)}{32\pi ^{2}}}\\\psi (-2,1)&={\tfrac {1}{2}}\ln 2\pi &\\\psi (-3,1)&={\tfrac {1}{4}}\ln 2\pi +\ln A\\\psi (-2,2)&=\ln 2\pi -1&\\\psi (-3,2)&=\ln 2\pi +2\ln A-{\tfrac {3}{4}}\\\end{aligned}}}

References

  1. ^ Espinosa, Olivier; Moll, Victor Hugo (Apr 2004). "A Generalized polygamma function" (PDF). Integral Transforms and Special Functions. 15 (2): 101–115. doi:10.1080/10652460310001600573.Open access icon