Baskakov operator

In functional analysis, a branch of mathematics, the Baskakov operators are generalizations of Bernstein polynomials, Szász–Mirakyan operators, and Lupas operators. They are defined by

[ L n ( f ) ] ( x ) = k = 0 ( 1 ) k x k k ! ϕ n ( k ) ( x ) f ( k n ) {\displaystyle [{\mathcal {L}}_{n}(f)](x)=\sum _{k=0}^{\infty }{(-1)^{k}{\frac {x^{k}}{k!}}\phi _{n}^{(k)}(x)f\left({\frac {k}{n}}\right)}}

where x [ 0 , b ) R {\displaystyle x\in [0,b)\subset \mathbb {R} } ( b {\displaystyle b} can be {\displaystyle \infty } ), n N {\displaystyle n\in \mathbb {N} } , and ( ϕ n ) n N {\displaystyle (\phi _{n})_{n\in \mathbb {N} }} is a sequence of functions defined on [ 0 , b ] {\displaystyle [0,b]} that have the following properties for all n , k N {\displaystyle n,k\in \mathbb {N} } :

  1. ϕ n C [ 0 , b ] {\displaystyle \phi _{n}\in {\mathcal {C}}^{\infty }[0,b]} . Alternatively, ϕ n {\displaystyle \phi _{n}} has a Taylor series on [ 0 , b ) {\displaystyle [0,b)} .
  2. ϕ n ( 0 ) = 1 {\displaystyle \phi _{n}(0)=1}
  3. ϕ n {\displaystyle \phi _{n}} is completely monotone, i.e. ( 1 ) k ϕ n ( k ) 0 {\displaystyle (-1)^{k}\phi _{n}^{(k)}\geq 0} .
  4. There is an integer c {\displaystyle c} such that ϕ n ( k + 1 ) = n ϕ n + c ( k ) {\displaystyle \phi _{n}^{(k+1)}=-n\phi _{n+c}^{(k)}} whenever n > max { 0 , c } {\displaystyle n>\max\{0,-c\}}

They are named after V. A. Baskakov, who studied their convergence to bounded, continuous functions.[1]

Basic results

The Baskakov operators are linear and positive.[2]

References

  • Lua error in Module:Citation/CS1/Configuration at line 2083: attempt to index a boolean value.

Footnotes

  1. ^ Lua error in Module:Citation/CS1/Configuration at line 2083: attempt to index a boolean value.
  2. ^ Lua error in Module:Citation/CS1/Configuration at line 2083: attempt to index a boolean value.
  • v
  • t
  • e