Holmes–Thompson volume

In geometry of normed spaces, the Holmes–Thompson volume is a notion of volume that allows to compare sets contained in different normed spaces (of the same dimension). It was introduced by Raymond D. Holmes and Anthony Charles Thompson.[1]

Definition

The Holmes–Thompson volume Vol HT ( A ) {\displaystyle \operatorname {Vol} _{\text{HT}}(A)} of a measurable set A R n {\displaystyle A\subseteq R^{n}} in a normed space ( R n , ) {\displaystyle (\mathbb {R} ^{n},\|-\|)} is defined as the 2n-dimensional measure of the product set A × B , {\displaystyle A\times B^{*},} where B R n {\displaystyle B^{*}\subseteq \mathbb {R} ^{n}} is the dual unit ball of {\displaystyle \|-\|} (the unit ball of the dual norm {\displaystyle \|-\|^{*}} ).

Symplectic (coordinate-free) definition

The Holmes–Thompson volume can be defined without coordinates: if A V {\displaystyle A\subseteq V} is a measurable set in an n-dimensional real normed space ( V , ) , {\displaystyle (V,\|-\|),} then its Holmes–Thompson volume is defined as the absolute value of the integral of the volume form 1 n ! ω ω n {\displaystyle {\frac {1}{n!}}\overbrace {\omega \wedge \cdots \wedge \omega } ^{n}} over the set A × B {\displaystyle A\times B^{*}} ,

Vol H T ( A ) = | A × B 1 n ! ω n | {\displaystyle \operatorname {Vol} _{HT}(A)=\left|\int _{A\times B^{*}}{\frac {1}{n!}}\omega ^{n}\right|}

where ω {\displaystyle \omega } is the standard symplectic form on the vector space V × V {\displaystyle V\times V^{*}} and B V {\displaystyle B^{*}\subseteq V^{*}} is the dual unit ball of {\displaystyle \|-\|} .

This definition is consistent with the previous one, because if each point x V {\displaystyle x\in V} is given linear coordinates ( x i ) 0 i < n {\displaystyle (x_{i})_{0\leq i<n}} and each covector ξ V {\displaystyle \xi \in V^{*}} is given the dual coordinates ( x i i ) 0 i < n {\displaystyle (xi_{i})_{0\leq i<n}} (so that ξ ( x ) = i ξ i x i {\displaystyle \xi (x)=\sum _{i}\xi _{i}x_{i}} ), then the standard symplectic form is ω = i d x i d ξ i {\displaystyle \omega =\sum _{i}\mathrm {d} x_{i}\wedge \mathrm {d} \xi _{i}} , and the volume form is

1 n ! ω n = ± d x 0 d x n 1 d ξ 0 d ξ n 1 , {\displaystyle {\frac {1}{n!}}\omega ^{n}=\pm \;\mathrm {d} x_{0}\wedge \dots \wedge \mathrm {d} x_{n-1}\wedge \mathrm {d} \xi _{0}\wedge \dots \wedge \mathrm {d} \xi _{n-1},}

whose integral over the set A × B V × V R n × R n {\displaystyle A\times B^{*}\subseteq V\times V^{*}\cong \mathbb {R} ^{n}\times \mathbb {R} ^{n}} is just the usual volume of the set in the coordinate space R 2 n {\displaystyle \mathbb {R} ^{2n}} .

Volume in Finsler manifolds

More generally, the Holmes–Thompson volume of a measurable set A {\displaystyle A} in a Finsler manifold ( M , F ) {\displaystyle (M,F)} can be defined as

Vol HT ( A ) := B A 1 n ! ω n , {\displaystyle \operatorname {Vol} _{\text{HT}}(A):=\int _{B^{*}A}{\frac {1}{n!}}\omega ^{n},}

where B A = { ( x , p ) T M :   x A  and  ξ T x M  with  ξ x 1 } {\displaystyle B^{*}A=\{(x,p)\in \mathrm {T} ^{*}M:\ x\in A{\text{ and }}\xi \in \mathrm {T} _{x}^{*}M{\text{ with }}\|\xi \|_{x}^{*}\leq 1\}} and ω {\displaystyle \omega } is the standard symplectic form on the cotangent bundle T M {\displaystyle \mathrm {T} ^{*}M} . Holmes–Thompson's definition of volume is appropriate for establishing links between the total volume of a manifold and the length of the geodesics (shortest curves) contained in it (such as systolic inequalities[2][3] and filling volumes[4][5][6][7][8]) because, according to Liouville's theorem, the geodesic flow preserves the symplectic volume of sets in the cotangent bundle.

Computation using coordinates

If M {\displaystyle M} is a region in coordinate space R n {\displaystyle \mathbb {R} ^{n}} , then the tangent and cotangent spaces at each point x M {\displaystyle x\in M} can both be identified with R n {\displaystyle \mathbb {R} ^{n}} . The Finsler metric is a continuous function F : T M = M × R n [ 0 , + ) {\displaystyle F:TM=M\times \mathbb {R} ^{n}\to [0,+\infty )} that yields a (possibly asymmetric) norm F x : v R n v x = F ( x , v ) {\displaystyle F_{x}:v\in \mathbb {R} ^{n}\mapsto \|v\|_{x}=F(x,v)} for each point x M {\displaystyle x\in M} . The Holmes–Thompson volume of a subset AM can be computed as

Vol HT ( A ) = | B A | = A | B x | d V o l n ( x ) {\displaystyle \operatorname {Vol} _{\textrm {HT}}(A)=|B^{*}A|=\int _{A}|B_{x}^{*}|\,\mathrm {d} \operatorname {Vol_{n}} (x)}

where for each point x M {\displaystyle x\in M} , the set B x R n {\displaystyle B_{x}^{*}\subseteq \mathbb {R} ^{n}} is the dual unit ball of F x {\displaystyle F_{x}} (the unit ball of the dual norm F x = x {\displaystyle F_{x}^{*}=\|-\|_{x}^{*}} ), the bars | | {\displaystyle |-|} denote the usual volume of a subset in coordinate space, and d V o l n ( x ) {\displaystyle \mathrm {d} \operatorname {Vol_{n}} (x)} is the product of all n coordinate differentials d x i {\displaystyle \mathrm {d} x_{i}} .

This formula follows, again, from the fact that the 2n-form 1 n ! ω n {\displaystyle \textstyle {{\frac {1}{n!}}\omega ^{n}}} is equal (up to a sign) to the product of the differentials of all n {\displaystyle n} coordinates x i {\displaystyle \mathrm {x} _{i}} and their dual coordinates ξ i {\displaystyle \xi _{i}} . The Holmes–Thompson volume of A is then equal to the usual volume of the subset B A = { ( x , ξ ) M × R n : ξ B x } {\displaystyle B^{*}A=\{(x,\xi )\in M\times \mathbb {R} ^{n}:\xi \in B_{x}^{*}\}} of R 2 n {\displaystyle \mathbb {R} ^{2n}} .

Santaló's formula

If A {\displaystyle A} is a simple region in a Finsler manifold (that is, a region homeomorphic to a ball, with convex boundary and a unique geodesic along A {\displaystyle A} joining each pair of points of A {\displaystyle A} ), then its Holmes–Thompson volume can be computed in terms of the path-length distance (along A {\displaystyle A} ) between the boundary points of A {\displaystyle A} using Santaló's formula, which in turn is based on the fact that the geodesic flow on the cotangent bundle is Hamiltonian. [9]

Normalization and comparison with Euclidean and Hausdorff measure

The original authors used[1] a different normalization for Holmes–Thompson volume. They divided the value given here by the volume of the Euclidean n-ball, to make Holmes–Thompson volume coincide with the product measure in the standard Euclidean space ( R n , 2 ) {\displaystyle (\mathbb {R} ^{n},\|-\|_{2})} . This article does not follow that convention.

If the Holmes–Thompson volume in normed spaces (or Finsler manifolds) is normalized, then it never exceeds the Hausdorff measure. This is a consequence of the Blaschke-Santaló inequality. The equality holds if and only if the space is Euclidean (or a Riemannian manifold).

References

Álvarez-Paiva, Juan-Carlos; Thompson, Anthony C. (2004). "Chapter 1: Volumes on Normed and Finsler Spaces" (PDF). In Bao, David; Bryant, Robert L.; Chern, Shiing-Shen; Shen, Zhongmin (eds.). A sampler of Riemann-Finsler geometry. MSRI Publications. Vol. 50. Cambridge University Press. pp. 1–48. ISBN 0-521-83181-4. MR 2132656.

  1. ^ a b Holmes, Raymond D.; Thompson, Anthony Charles (1979). "N-dimensional area and content in Minkowski spaces". Pacific J. Math. 85 (1): 77–110. doi:10.2140/pjm.1979.85.77. MR 0571628.
  2. ^ Sabourau, Stéphane (2010). "Local extremality of the Calabi–Croke sphere for the length of the shortest closed geodesic". Journal of the London Mathematical Society. 82 (3): 549–562. arXiv:0907.2223. doi:10.1112/jlms/jdq045. S2CID 1156703.
  3. ^ Álvarez Paiva, Juan-Carlos; Balacheff, Florent; Tzanev, Kroum (2016). "Isosystolic inequalities for optical hypersurfaces". Advances in Mathematics. 301: 934–972. arXiv:1308.5522. doi:10.1016/j.aim.2016.07.003. S2CID 119175687.
  4. ^ Ivanov, Sergei V. (2010). "Volume Comparison via Boundary Distances". Proceedings of ICM. arXiv:1004.2505.
  5. ^ Ivanov, Sergei V. (2001). "On two-dimensional minimal fillings". Algebra i Analiz (in Russian). 13 (1): 26–38.
  6. ^ Ivanov, Sergei V. (2002). "On two-dimensional minimal fillings". St. Petersburg Math. J. 13 (1): 17–25. MR 1819361.
  7. ^ Ivanov, Sergei V. (2011). "Filling minimality of Finslerian 2-discs". Proc. Steklov Inst. Math. 273 (1): 176–190. arXiv:0910.2257. doi:10.1134/S0081543811040079. S2CID 115167646.
  8. ^ Ivanov, Sergei V. (2013). "Local monotonicity of Riemannian and Finsler volume with respect to boundary distances". Geometriae Dedicata. 164 (2013): 83–96. arXiv:1109.4091. doi:10.1007/s10711-012-9760-y. S2CID 119130237.
  9. ^ "Santaló formula". Encyclopedia of Mathematics.