Levinson's inequality

In mathematics, Levinson's inequality is the following inequality, due to Norman Levinson, involving positive numbers. Let a > 0 {\displaystyle a>0} and let f {\displaystyle f} be a given function having a third derivative on the range ( 0 , 2 a ) {\displaystyle (0,2a)} , and such that

f ( x ) 0 {\displaystyle f'''(x)\geq 0}

for all x ( 0 , 2 a ) {\displaystyle x\in (0,2a)} . Suppose 0 < x i a {\displaystyle 0<x_{i}\leq a} and 0 < p i {\displaystyle 0<p_{i}} for i = 1 , , n {\displaystyle i=1,\ldots ,n} . Then

i = 1 n p i f ( x i ) i = 1 n p i f ( i = 1 n p i x i i = 1 n p i ) i = 1 n p i f ( 2 a x i ) i = 1 n p i f ( i = 1 n p i ( 2 a x i ) i = 1 n p i ) . {\displaystyle {\frac {\sum _{i=1}^{n}p_{i}f(x_{i})}{\sum _{i=1}^{n}p_{i}}}-f\left({\frac {\sum _{i=1}^{n}p_{i}x_{i}}{\sum _{i=1}^{n}p_{i}}}\right)\leq {\frac {\sum _{i=1}^{n}p_{i}f(2a-x_{i})}{\sum _{i=1}^{n}p_{i}}}-f\left({\frac {\sum _{i=1}^{n}p_{i}(2a-x_{i})}{\sum _{i=1}^{n}p_{i}}}\right).}

The Ky Fan inequality is the special case of Levinson's inequality, where

p i = 1 ,   a = 1 2 ,  and  f ( x ) = log x . {\displaystyle p_{i}=1,\ a={\frac {1}{2}},{\text{ and }}f(x)=\log x.}

References

  • Scott Lawrence and Daniel Segalman: A generalization of two inequalities involving means, Proceedings of the American Mathematical Society. Vol 35 No. 1, September 1972.
  • Norman Levinson: Generalization of an inequality of Ky Fan, Journal of Mathematical Analysis and Applications. Vol 8 (1964), 133–134.