Linear flow on the torus

In mathematics, especially in the area of mathematical analysis known as dynamical systems theory, a linear flow on the torus is a flow on the n-dimensional torus T n = S 1 × S 1 × × S 1 n {\displaystyle \mathbb {T} ^{n}=\underbrace {S^{1}\times S^{1}\times \cdots \times S^{1}} _{n}} which is represented by the following differential equations with respect to the standard angular coordinates ( θ 1 , θ 2 , , θ n ) : {\displaystyle \left(\theta _{1},\theta _{2},\ldots ,\theta _{n}\right):} d θ 1 d t = ω 1 , d θ 2 d t = ω 2 , , d θ n d t = ω n . {\displaystyle {\frac {d\theta _{1}}{dt}}=\omega _{1},\quad {\frac {d\theta _{2}}{dt}}=\omega _{2},\quad \ldots ,\quad {\frac {d\theta _{n}}{dt}}=\omega _{n}.}

The solution of these equations can explicitly be expressed as Φ ω t ( θ 1 , θ 2 , , θ n ) = ( θ 1 + ω 1 t , θ 2 + ω 2 t , , θ n + ω n t ) mod 2 π . {\displaystyle \Phi _{\omega }^{t}(\theta _{1},\theta _{2},\dots ,\theta _{n})=(\theta _{1}+\omega _{1}t,\theta _{2}+\omega _{2}t,\dots ,\theta _{n}+\omega _{n}t){\bmod {2}}\pi .}

If we represent the torus as T n = R n / Z n {\displaystyle \mathbb {T^{n}} =\mathbb {R} ^{n}/\mathbb {Z} ^{n}} we see that a starting point is moved by the flow in the direction ω = ( ω 1 , ω 2 , , ω n ) {\displaystyle \omega =\left(\omega _{1},\omega _{2},\ldots ,\omega _{n}\right)} at constant speed and when it reaches the border of the unitary n {\displaystyle n} -cube it jumps to the opposite face of the cube.

Irrational rotation on a 2-torus

For a linear flow on the torus either all orbits are periodic or all orbits are dense on a subset of the n {\displaystyle n} -torus which is a k {\displaystyle k} -torus. When the components of ω {\displaystyle \omega } are rationally independent all the orbits are dense on the whole space. This can be easily seen in the two dimensional case: if the two components of ω {\displaystyle \omega } are rationally independent then the Poincaré section of the flow on an edge of the unit square is an irrational rotation on a circle and therefore its orbits are dense on the circle, as a consequence the orbits of the flow must be dense on the torus.

Irrational winding of a torus

In topology, an irrational winding of a torus is a continuous injection of a line into a two-dimensional torus that is used to set up several counterexamples.[1] A related notion is the Kronecker foliation of a torus, a foliation formed by the set of all translates of a given irrational winding.

Definition

One way of constructing a torus is as the quotient space T 2 = R 2 / Z 2 {\displaystyle \mathbb {T^{2}} =\mathbb {R} ^{2}/\mathbb {Z} ^{2}} of a two-dimensional real vector space by the additive subgroup of integer vectors, with the corresponding projection π : R 2 T 2 . {\displaystyle \pi :\mathbb {R} ^{2}\to \mathbb {T^{2}} .} Each point in the torus has as its preimage one of the translates of the square lattice Z 2 {\displaystyle \mathbb {Z} ^{2}} in R 2 , {\displaystyle \mathbb {R} ^{2},} and π {\displaystyle \pi } factors through a map that takes any point in the plane to a point in the unit square [ 0 , 1 ) 2 {\displaystyle [0,1)^{2}} given by the fractional parts of the original point's Cartesian coordinates. Now consider a line in R 2 {\displaystyle \mathbb {R} ^{2}} given by the equation y = k x . {\displaystyle y=kx.} If the slope k {\displaystyle k} of the line is rational, then it can be represented by a fraction and a corresponding lattice point of Z 2 . {\displaystyle \mathbb {Z} ^{2}.} It can be shown that then the projection of this line is a simple closed curve on a torus. If, however, k {\displaystyle k} is irrational, then it will not cross any lattice points except 0, which means that its projection on the torus will not be a closed curve, and the restriction of π {\displaystyle \pi } on this line is injective. Moreover, it can be shown that the image of this restricted projection as a subspace, called the irrational winding of a torus, is dense in the torus.

Applications

Irrational windings of a torus may be used to set up counter-examples related to monomorphisms. An irrational winding is an immersed submanifold but not a regular submanifold of the torus, which shows that the image of a manifold under a continuous injection to another manifold is not necessarily a (regular) submanifold.[2] Irrational windings are also examples of the fact that the topology of the submanifold does not have to coincide with the subspace topology of the submanifold.[2]

Secondly, the torus can be considered as a Lie group U ( 1 ) × U ( 1 ) {\displaystyle U(1)\times U(1)} , and the line can be considered as R {\displaystyle \mathbb {R} } . Then it is easy to show that the image of the continuous and analytic group homomorphism x ( e i x , e i k x ) {\displaystyle x\mapsto \left(e^{ix},e^{ikx}\right)} is not a regular submanifold for irrational k , {\displaystyle k,} [2][3] although it is an immersed submanifold, and therefore a Lie subgroup. It may also be used to show that if a subgroup H {\displaystyle H} of the Lie group G {\displaystyle G} is not closed, the quotient G / H {\displaystyle G/H} does not need to be a manifold[4] and might even fail to be a Hausdorff space.

See also

Notes

^ a: As a topological subspace of the torus, the irrational winding is not a manifold at all, because it is not locally homeomorphic to R {\displaystyle \mathbb {R} } .

References

  1. ^ D. P. Zhelobenko (January 1973). Compact Lie groups and their representations. ISBN 9780821886649.
  2. ^ a b c Loring W. Tu (2010). An Introduction to Manifolds. Springer. pp. 168. ISBN 978-1-4419-7399-3.
  3. ^ Čap, Andreas; Slovák, Jan (2009), Parabolic Geometries: Background and general theory, AMS, p. 24, ISBN 978-0-8218-2681-2
  4. ^ Sharpe, R.W. (1997), Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Springer-Verlag, New York, p. 146, ISBN 0-387-94732-9

Bibliography

  • Katok, Anatole; Hasselblatt, Boris (1996). Introduction to the modern theory of dynamical systems. Cambridge. ISBN 0-521-57557-5.