List of equations in fluid mechanics

Part of a series on
Continuum mechanics
J = D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}}
Laws
Conservations
  • Mass
  • Momentum
  • Energy
Inequalities
Solid mechanics
  • Deformation
  • Elasticity
    • linear
  • Plasticity
  • Hooke's law
  • Stress
  • Strain
    • Finite strain
    • Infinitesimal strain
  • Compatibility
  • Bending
  • Contact mechanics
    • frictional
  • Material failure theory
  • Fracture mechanics
  • v
  • t
  • e

This article summarizes equations in the theory of fluid mechanics.

Definitions

Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to normal n). F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area.

Here t ^ {\displaystyle \mathbf {\hat {t}} \,\!} is a unit vector in the direction of the flow/current/flux.

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Flow velocity vector field u u = u ( r , t ) {\displaystyle \mathbf {u} =\mathbf {u} \left(\mathbf {r} ,t\right)\,\!} m s−1 [L][T]−1
Velocity pseudovector field ω ω = × v {\displaystyle {\boldsymbol {\omega }}=\nabla \times \mathbf {v} } s−1 [T]−1
Volume velocity, volume flux φV (no standard symbol) ϕ V = S u d A {\displaystyle \phi _{V}=\int _{S}\mathbf {u} \cdot \mathrm {d} \mathbf {A} \,\!} m3 s−1 [L]3 [T]−1
Mass current per unit volume s (no standard symbol) s = d ρ / d t {\displaystyle s=\mathrm {d} \rho /\mathrm {d} t\,\!} kg m−3 s−1 [M] [L]−3 [T]−1
Mass current, mass flow rate Im I m = d m / d t {\displaystyle I_{\mathrm {m} }=\mathrm {d} m/\mathrm {d} t\,\!} kg s−1 [M][T]−1
Mass current density jm I m = j m d S {\displaystyle I_{\mathrm {m} }=\iint \mathbf {j} _{\mathrm {m} }\cdot \mathrm {d} \mathbf {S} \,\!} kg m−2 s−1 [M][L]−2[T]−1
Momentum current Ip I p = d | p | / d t {\displaystyle I_{\mathrm {p} }=\mathrm {d} \left|\mathbf {p} \right|/\mathrm {d} t\,\!} kg m s−2 [M][L][T]−2
Momentum current density jp I p = j p d S {\displaystyle I_{\mathrm {p} }=\iint \mathbf {j} _{\mathrm {p} }\cdot \mathrm {d} \mathbf {S} } kg m s−2 [M][L][T]−2

Equations

Physical situation Nomenclature Equations
Fluid statics,
pressure gradient
  • r = Position
  • ρ = ρ(r) = Fluid density at gravitational equipotential containing r
  • g = g(r) = Gravitational field strength at point r
  • P = Pressure gradient
P = ρ g {\displaystyle \nabla P=\rho \mathbf {g} \,\!}
Buoyancy equations
  • ρf = Mass density of the fluid
  • Vimm = Immersed volume of body in fluid
  • Fb = Buoyant force
  • Fg = Gravitational force
  • Wapp = Apparent weight of immersed body
  • W = Actual weight of immersed body
Buoyant force

F b = ρ f V i m m g = F g {\displaystyle \mathbf {F} _{\mathrm {b} }=-\rho _{f}V_{\mathrm {imm} }\mathbf {g} =-\mathbf {F} _{\mathrm {g} }\,\!}

Apparent weight
W a p p = W F b {\displaystyle \mathbf {W} _{\mathrm {app} }=\mathbf {W} -\mathbf {F} _{\mathrm {b} }\,\!}

Bernoulli's equation pconstant is the total pressure at a point on a streamline p + ρ u 2 / 2 + ρ g y = p c o n s t a n t {\displaystyle p+\rho u^{2}/2+\rho gy=p_{\mathrm {constant} }\,\!}
Euler equations
ρ t + ( ρ u ) = 0 {\displaystyle {\frac {\partial \rho }{\partial t}}+\nabla \cdot (\rho \mathbf {u} )=0\,\!}

ρ u t + ( u ( ρ u ) ) + p = 0 {\displaystyle {\frac {\partial \rho {\mathbf {u} }}{\partial t}}+\nabla \cdot \left(\mathbf {u} \otimes \left(\rho \mathbf {u} \right)\right)+\nabla p=0\,\!}
E t + ( u ( E + p ) ) = 0 {\displaystyle {\frac {\partial E}{\partial t}}+\nabla \cdot \left(\mathbf {u} \left(E+p\right)\right)=0\,\!}
E = ρ ( U + 1 2 u 2 ) {\displaystyle E=\rho \left(U+{\frac {1}{2}}\mathbf {u} ^{2}\right)\,\!}

Convective acceleration a = ( u ) u {\displaystyle \mathbf {a} =\left(\mathbf {u} \cdot \nabla \right)\mathbf {u} }
Navier–Stokes equations
ρ ( u t + u u ) = p + T D + f {\displaystyle \rho \left({\frac {\partial \mathbf {u} }{\partial t}}+\mathbf {u} \cdot \nabla \mathbf {u} \right)=-\nabla p+\nabla \cdot \mathbf {T} _{\mathrm {D} }+\mathbf {f} }

See also

Sources

  • P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
  • G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
  • A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
  • R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
  • C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
  • P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
  • L.N. Hand, J.D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
  • T.B. Arkill, C.J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
  • H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.

Further reading

  • L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
  • J.B. Marion, W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
  • A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
  • H.D. Young, R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.