Sinc numerical methods

In numerical analysis and applied mathematics, sinc numerical methods are numerical techniques[1] for finding approximate solutions of partial differential equations and integral equations based on the translates of sinc function and Cardinal function C(f,h) which is an expansion of f defined by

C ( f , h ) ( x ) = k = f ( k h ) sinc ( x h k ) {\displaystyle C(f,h)(x)=\sum _{k=-\infty }^{\infty }f(kh)\,{\textrm {sinc}}\left({\dfrac {x}{h}}-k\right)}

where the step size h>0 and where the sinc function is defined by

sinc ( x ) = sin ( π x ) π x {\displaystyle {\textrm {sinc}}(x)={\frac {\sin(\pi x)}{\pi x}}}

Sinc approximation methods excel for problems whose solutions may have singularities, or infinite domains, or boundary layers.

The truncated Sinc expansion of f is defined by the following series:

C M , N ( f , h ) ( x ) = k = M N f ( k h ) sinc ( x h k ) {\displaystyle C_{M,N}(f,h)(x)=\displaystyle \sum _{k=-M}^{N}f(kh)\,{\textrm {sinc}}\left({\dfrac {x}{h}}-k\right)} .

Sinc numerical methods cover

  • function approximation,
  • approximation of derivatives,
  • approximate definite and indefinite integration,
  • approximate solution of initial and boundary value ordinary differential equation (ODE) problems,
  • approximation and inversion of Fourier and Laplace transforms,
  • approximation of Hilbert transforms,
  • approximation of definite and indefinite convolution,
  • approximate solution of partial differential equations,
  • approximate solution of integral equations,
  • construction of conformal maps.

Indeed, Sinc are ubiquitous for approximating every operation of calculus

In the standard setup of the sinc numerical methods, the errors (in big O notation) are known to be O ( e c n ) {\displaystyle O\left(e^{-c{\sqrt {n}}}\right)} with some c>0, where n is the number of nodes or bases used in the methods. However, Sugihara[2] has recently found that the errors in the Sinc numerical methods based on double exponential transformation are O ( e k n ln n ) {\displaystyle O\left(e^{-{\frac {kn}{\ln n}}}\right)} with some k>0, in a setup that is also meaningful both theoretically and practically and are found to be best possible in a certain mathematical sense.

Reading

  • Stenger, Frank (2011). Handbook of Sinc Numerical Methods. Boca Raton, Florida: CRC Press. ISBN 9781439821596.
  • Lund, John; Bowers, Kenneth (1992). Sinc Methods for Quadrature and Differential Equations. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). ISBN 9780898712988.

References

  1. ^ Stenger, F. (2000). "Summary of sinc numerical methods". Journal of Computational and Applied Mathematics. 121: 379–420. doi:10.1016/S0377-0427(00)00348-4.
  2. ^ Sugihara, M.; Matsuo, T. (2004). "Recent developments of the Sinc numerical methods". Journal of Computational and Applied Mathematics. 164–165: 673. doi:10.1016/j.cam.2003.09.016.


  • v
  • t
  • e