Somos' quadratic recurrence constant

In mathematics, Somos' quadratic recurrence constant, named after Michael Somos, is the number

σ = 1 2 3 = 1 1 / 2 2 1 / 4 3 1 / 8 . {\displaystyle \sigma ={\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2}\;2^{1/4}\;3^{1/8}\cdots .\,}

This can be easily re-written into the far more quickly converging product representation

σ = σ 2 / σ = ( 2 1 ) 1 / 2 ( 3 2 ) 1 / 4 ( 4 3 ) 1 / 8 ( 5 4 ) 1 / 16 , {\displaystyle \sigma =\sigma ^{2}/\sigma =\left({\frac {2}{1}}\right)^{1/2}\left({\frac {3}{2}}\right)^{1/4}\left({\frac {4}{3}}\right)^{1/8}\left({\frac {5}{4}}\right)^{1/16}\cdots ,}

which can then be compactly represented in infinite product form by:

σ = k = 1 ( 1 + 1 k ) 1 2 k . {\displaystyle \sigma =\prod _{k=1}^{\infty }\left(1+{\frac {1}{k}}\right)^{\frac {1}{2^{k}}}.}

The constant σ arises when studying the asymptotic behaviour of the sequence

g 0 = 1 ; g n = n g n 1 2 , n > 1 , {\displaystyle g_{0}=1\,;\,g_{n}=ng_{n-1}^{2},\qquad n>1,\,}

with first few terms 1, 1, 2, 12, 576, 1658880, ... (sequence A052129 in the OEIS). This sequence can be shown to have asymptotic behaviour as follows:[1]

g n σ 2 n n + 2 + O ( 1 n ) . {\displaystyle g_{n}\sim {\frac {\sigma ^{2^{n}}}{n+2+O({\frac {1}{n}})}}.}

Guillera and Sondow give a representation in terms of the derivative of the Lerch transcendent:

ln σ = 1 2 Φ s ( 1 2 , 0 , 1 ) {\displaystyle \ln \sigma ={\frac {-1}{2}}{\frac {\partial \Phi }{\partial s}}\!\left({\frac {1}{2}},0,1\right)}

where ln is the natural logarithm and Φ {\displaystyle \Phi } (zsq) is the Lerch transcendent.

Finally,

σ = 1.661687949633594121296 {\displaystyle \sigma =1.661687949633594121296\dots \;} (sequence A112302 in the OEIS).

Notes

  1. ^ Weisstein, Eric W. "Somos's Quadratic Recurrence Constant". MathWorld.

References

  • Steven R. Finch, Mathematical Constants (2003), Cambridge University Press, p. 446. ISBN 0-521-81805-2.
  • Jesus Guillera and Jonathan Sondow, "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", Ramanujan Journal 16 (2008), 247–270 (Provides an integral and a series representation). arXiv:math/0506319


  • v
  • t
  • e