Trifluoroiodomethane

Trifluoroiodomethane
Names
Preferred IUPAC name
Trifluoro(iodo)methane
Other names
Trifluoroiodomethane
Iodotrifluoromethane
Monoiodotrifluoromethane
Trifluoromethyl iodide
Perfluoromethyl iodide
Freon 13T1
Identifiers
CAS Number
  • 2314-97-8 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 15962 checkY
ECHA InfoCard 100.017.286 Edit this at Wikidata
EC Number
  • 219-014-5
PubChem CID
  • 16843
RTECS number
  • PB6975000
UNII
  • 42A379KB0U checkY
CompTox Dashboard (EPA)
  • DTXSID10882016 DTXSID2062325, DTXSID10882016 Edit this at Wikidata
InChI
  • InChI=1S/CF3I/c2-1(3,4)5 checkY
    Key: VPAYJEUHKVESSD-UHFFFAOYSA-N checkY
  • InChI=1/CF3I/c2-1(3,4)5
  • FC(F)(F)I
Properties
Chemical formula
CF3I
Molar mass 195.91 g/mol
Appearance Colorless odorless gas
Density 2.5485 g/cm3 at -78.5 °C
2.3608 g/cm3 at -32.5 °C
Melting point −110 °C (−166 °F; 163 K)
Boiling point −22.5 °C (−8.5 °F; 250.7 K)
Solubility in water
Slightly
Vapor pressure 541 kPa
Hazards
GHS labelling:
Pictograms
GHS08: Health hazard
Warning
Hazard statements
H341
P201, P202, P281, P308+P313, P405, P501
Supplementary data page
Trifluoroiodomethane (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references
Chemical compound

Trifluoroiodomethane, also referred to as trifluoromethyl iodide is a halomethane with the formula CF3I. It is an experimental alternative to Halon 1301 (CBrF3) in unoccupied areas.[1] It would be used as a gaseous fire suppression flooding agent for in-flight aircraft and electronic equipment fires.

Chemistry

It is used in the rhodium-catalyzed α-trifluoromethylation of α,β-unsaturated ketones.[2]

It can be used as a new generation fire extinguishing agent to replace Halon in fire protection systems.[3] The mechanism of extinguishing fires for CF3I is active and primarily based on interruption of the chain reaction in the combustion area of the flame by so-called "negative" catalytic action.[4] It is also used as an eco-friendly insulation gas to replace SF6 in electrical power industry.[5]

In the presence of sunlight or at temperatures above 100 °C it can react with water, forming hazardous by-products such as hydrogen fluoride (HF), hydrogen iodide (HI) and carbonyl fluoride (COF2).[citation needed]

Environmental effects

Trifluoroiodomethane contains carbon, fluorine, and iodine atoms. Although iodine is several hundred times more efficient at destroying stratospheric ozone than chlorine, experiments have shown that because the weak C-I bond breaks easily under the influence of water (owing to the electron-attracting fluorine atoms), trifluoroiodomethane has an ozone depleting potential less than one-thousandth that of Halon 1301 (0.008-0.01). Its atmospheric lifetime, at less than 1 month, is less than 1 percent that of Halon 1301, and less even than hydrogen chloride formed from volcanoes.

There is, however, still the problem of the C-F bonds absorbing in the atmospheric window.[6] However, the IPCC has calculated the 100-year global warming potential of trifluoroiodomethane to be 0.4 (i.e., 40% of that of CO2).[7]

References

  1. ^ Vitali, Juan. "Halon Substitute Protects Aircrews and the Ozone Layer". www.afrlhorizons.com. Archived from the original on 11 July 2007. Retrieved 2017-09-06.
  2. ^ "Trifluoroiodomethane 171441". Sigma-Aldrich. Retrieved 2017-09-06.
  3. ^ "Fire extinguishing agents trifluoroiodomethane/CF3I". beijingyuji. Retrieved 2018-09-20.[unreliable source?]
  4. ^ "CFI rim seal fire protection for floating roof tanks" (PDF). 2018-09-20.
  5. ^ Katagiri, H.; Kasuya, H.; Mizoguchi, H.; Yanabu, S. (October 2008). "Investigation of the Performance of CF3I Gas as a Possible Substitute for SF6". IEEE Transactions on Dielectrics and Electrical Insulation. 15 (5): 1424–1429. doi:10.1109/TDEI.2008.4656252. S2CID 21905295.
  6. ^ Shimanouchi, T. (July 1977). "Tables of molecular vibrational frequencies. Consolidated volume II". Journal of Physical and Chemical Reference Data. 6 (3): 993–1102. Bibcode:1977JPCRD...6..993S. doi:10.1063/1.555560.
  7. ^ Ramfjord, Birgit (2012-03-05). "Listing of GWP Values as per Report IPCC WG1 AR4" (PDF). Swedish Defence Materiel Administration. Archived from the original (PDF) on 13 March 2016. Retrieved 7 September 2017.

Further reading

  • National Research Council (US) Subcommittee on Iodotrifluoromethane (2004). Iodotrifluoromethane. doi:10.17226/11090. ISBN 978-0-309-09307-1. PMID 25032315.
  • Solomon, Susan; Burkholder, James B.; Ravishankara, A. R.; Garcia, Rolando R. (1994). "Ozone depletion and global warming potentials of CF3I". Journal of Geophysical Research. 99 (D10): 20929. Bibcode:1994JGR....9920929S. doi:10.1029/94JD01833.
  • Duan, Y. Y.; Shi, L.; Sun, L. Q.; Zhu, M. S.; Han, L. Z. (1 March 2000). "Thermodynamic Properties of Trifluoroiodomethane (CF3I)". International Journal of Thermophysics. 21 (2): 393–404. doi:10.1023/A:1006683529436. S2CID 118125837.
  • Duan, Yuan-Yuan; Shi, Lin; Zhu, Ming-Shan; Han, Li-Zhong (January 1999). "Surface tension of trifluoroiodomethane (CF3I)". Fluid Phase Equilibria. 154 (1): 71–77. doi:10.1016/S0378-3812(98)00439-7.
  • Duan, Y. Y.; Sun, L. Q.; Shi, L.; Zhu, M. S.; Han, L. Z. (1 September 1997). "Thermal Conductivity of Gaseous Trifluoroiodomethane (CF3I)". Journal of Chemical & Engineering Data. 42 (5): 890–893. doi:10.1021/je9700378.
  • Duan, Yuan-Yuan; Shi, Lin; Zhu, Ming-Shan; Han, Li-Zhong (1 May 1999). "Critical Parameters and Saturated Density of Trifluoroiodomethane (CF3I)". Journal of Chemical & Engineering Data. 44 (3): 501–504. doi:10.1021/je980251b.
  • Markgraf, Stewart J.; Wells, J. R.; Wiseman, Floyd L. (30 April 1996). Chamber Studies of Photolysis and Hydroxyl Radical Reactions of Trifluoroiodomethane. DTIC ADA318474.
  • National Research Council (US) Subcommittee on Iodotrifluoromethane (2004). "Physical and Chemical Properties And Efficacy". Iodotrifluoromethane. pp. 15–17. doi:10.17226/11090. ISBN 978-0-309-09307-1. PMID 25032315.
  • Data sheet (in Japanese)
  • Material Safety Data Sheet CF3I (in English)
  • CF3I can be used as fire extinguishing agent
  • v
  • t
  • e
Unsubstituted
  • CH4
Monosubstituted
  • CH3F
  • CH3Cl
  • CH3Br
  • CH3I
  • CH3At
Disubstituted
  • CH2F2
  • CH2ClF
  • CH2BrF
  • CH2FI
  • CH2Cl2
  • CH2BrCl
  • CH2ClI
  • CH2Br2
  • CH2BrI
  • CH2I2
Trisubstituted
  • CHF3
  • CHClF2
  • CHBrF2
  • CHF2I
  • CHCl2F
  • C*HBrClF
  • C*HClFI
  • CHBr2F
  • C*HBrFI
  • CHFI2
  • CHCl3
  • CHBrCl2
  • CHCl2I
  • CHBr2Cl
  • C*HBrClI
  • CHClI2
  • CHBr3
  • CHBr2I
  • CHBrI2
  • CHI3
Tetrasubstituted
  • CF4
  • CClF3
  • CBrF3
  • CF3I
  • CCl2F2
  • CBrClF2
  • CClF2I
  • CBr2F2
  • CBrF2I
  • CF2I2
  • CCl3F
  • CBrCl2F
  • CCl2FI
  • CBr2ClF
  • C*BrClFI
  • CClFI2
  • CBr3F
  • CBr2FI
  • CBrFI2
  • CFI3
  • CCl4
  • CBrCl3
  • CCl3I
  • CBr2Cl2
  • CBrCl2I
  • CCl2I2
  • CBr3Cl
  • CBr2ClI
  • CBrClI2
  • CClI3
  • CBr4
  • CBr3I
  • CBr2I2
  • CBrI3
  • CI4
* Chiral compound.
  • v
  • t
  • e
  • v
  • t
  • e
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF6, AsF6, SbF6 compounds
  • AgPF6
  • KAsF6
  • LiAsF6
  • NaAsF6
  • HPF6
  • HSbF6
  • NH4PF6
  • LiSbF6
  • KPF6
  • KSbF6
  • LiPF6
  • NaPF6
  • NaSbF6
  • TlPF6
AlF6 compounds
  • (NH4)3[AlF6]
  • Cs2AlF5
  • Li3AlF6
  • K3AlF6
  • Na3AlF6
chlorides, bromides, iodides
and pseudohalogenides
SiF62-, GeF62- compounds
  • BaSiF6
  • BaGeF6
  • (NH4)2SiF6
  • Na2[SiF6]
  • K2[SiF6]
  • Li2GeF6
  • Li2SiF6
Oxyfluorides
  • BrOF3
  • BrO2F
  • BrO3F
  • LaOF
  • ThOF2
  • VOF
    3
  • TcO
    3
    F
  • WOF
    4
  • YOF
  • ClOF3
  • ClO2F3
Organofluorides
  • CBrF3
  • CBr2F2
  • CBr3F
  • CClF3
  • CCl2F2
  • CCl3F
  • CF2O
  • CF3I
  • CHF3
  • CH2F2
  • CH3F
  • C2Cl3F3
  • C2H3F
  • C6H5F
  • C7H5F3
  • C15F33N
  • C3H5F
  • C6H11F
with transition metal,
lanthanide, actinide, ammonium
  • VOF3
  • CrOF4
  • CrF2O2
  • NH4F
  • (NH4)3CrF6
  • (NH4)3GaF6
  • (NH4)2GeF6
  • (NH4)3FeF6
  • (NH4)3InF6
  • NH4NbF6
  • (NH4)2SnF6
  • NH4TaF6
  • (NH4)3VF6
  • (NH4)2ZrF6
  • CsXeF7
  • Li2SnF6
  • Li2TiF6
  • LiWF6
  • Li2ZrF6
  • K2TiF6
  • Rb2TiF6
  • Na2TiF6
  • Na2ZrF6
  • K2NbF7
  • K2TaF7
  • K2ZrF6
  • UO2F2
nitric acids
bifluorides
  • KHF2
  • NaHF2
  • NH4HF2
thionyl, phosphoryl,
and iodosyl
  • F2OS
  • F3OP
  • PSF3
  • IOF3
  • IO3F
  • IOF5
  • IO2F
  • IO2F3