Funciones theta de Neville

Gráficos de las funciones theta de Neville

En matemáticas, las funciones theta de Neville, que llevan el nombre del matemático británico Eric Harold Neville (1889-1961),[1]​ se definen de la siguiente manera:[2][3][4]

θ c ( z , m ) = 2 π q ( m ) 1 / 4 m 1 / 4 K ( m ) k = 0 ( q ( m ) ) k ( k + 1 ) cos ( ( 2 k + 1 ) π z 2 K ( m ) ) {\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}
θ d ( z , m ) = 2 π 2 K ( m ) ( 1 + 2 k = 1 ( q ( m ) ) k 2 cos ( π z k K ( m ) ) ) {\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
θ n ( z , m ) = 2 π 2 ( 1 m ) 1 / 4 K ( m ) ( 1 + 2 k = 1 ( 1 ) k ( q ( m ) ) k 2 cos ( π z k K ( m ) ) ) {\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)}
θ s ( z , m ) = 2 π q ( m ) 1 / 4 m 1 / 4 ( 1 m ) 1 / 4 K ( m ) k = 0 ( 1 ) k ( q ( m ) ) k ( k + 1 ) sin ( ( 2 k + 1 ) π z 2 K ( m ) ) {\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)}

donde: K(m) es la integral elíptica completo del primer tipo, K ( m ) = K ( 1 m ) {\displaystyle K'(m)=K(1-m)} , y q ( m ) = e π K ( m ) / K ( m ) {\displaystyle q(m)=e^{-\pi K'(m)/K(m)}} es el nomo elíptico.

Téngase en cuenta que las funciones θp(z,m) a veces se definen en términos del nombre q(m) y se escriben θp(z,q) (por ejemplo, NIST[5]​). Las funciones también pueden escribirse en términos del parámetro τ, con el valor θp(z|τ) donde q = e i π τ {\displaystyle q=e^{i\pi \tau }} .

Relación con otras funciones

Las funciones theta de Neville pueden expresarse en términos de las funciones theta de Jacobi[5]

θ s ( z | τ ) = θ 3 2 ( 0 | τ ) θ 1 ( z | τ ) / θ 1 ( 0 | τ ) {\displaystyle \theta _{s}(z|\tau )=\theta _{3}^{2}(0|\tau )\theta _{1}(z'|\tau )/\theta '_{1}(0|\tau )}
θ c ( z | τ ) = θ 2 ( z | τ ) / θ 2 ( 0 | τ ) {\displaystyle \theta _{c}(z|\tau )=\theta _{2}(z'|\tau )/\theta _{2}(0|\tau )}
θ n ( z | τ ) = θ 4 ( z | τ ) / θ 4 ( 0 | τ ) {\displaystyle \theta _{n}(z|\tau )=\theta _{4}(z'|\tau )/\theta _{4}(0|\tau )}
θ d ( z | τ ) = θ 3 ( z | τ ) / θ 3 ( 0 | τ ) {\displaystyle \theta _{d}(z|\tau )=\theta _{3}(z'|\tau )/\theta _{3}(0|\tau )}

donde z = z / θ 3 2 ( 0 | τ ) {\displaystyle z'=z/\theta _{3}^{2}(0|\tau )} .

También están relacionadas con las funciones elípticas de Jacobi. Si pq(u,m) es una función elíptica de Jacobi (p y q son uno de s,c,n,d), entonces

pq ( u , m ) = θ p ( u , m ) θ q ( u , m ) . {\displaystyle \operatorname {pq} (u,m)={\frac {\theta _{p}(u,m)}{\theta _{q}(u,m)}}.}

Ejemplos

  • θ c ( 2.5 , 0.3 ) 0.65900466676738154967 {\displaystyle \theta _{c}(2.5,0.3)\approx -0.65900466676738154967}
  • θ d ( 2.5 , 0.3 ) 0.95182196661267561994 {\displaystyle \theta _{d}(2.5,0.3)\approx 0.95182196661267561994}
  • θ n ( 2.5 , 0.3 ) 1.0526693354651613637 {\displaystyle \theta _{n}(2.5,0.3)\approx 1.0526693354651613637}
  • θ s ( 2.5 , 0.3 ) 0.82086879524530400536 {\displaystyle \theta _{s}(2.5,0.3)\approx 0.82086879524530400536}

Simetría

  • θ c ( z , m ) = θ c ( z , m ) {\displaystyle \theta _{c}(z,m)=\theta _{c}(-z,m)}
  • θ d ( z , m ) = θ d ( z , m ) {\displaystyle \theta _{d}(z,m)=\theta _{d}(-z,m)}
  • θ n ( z , m ) = θ n ( z , m ) {\displaystyle \theta _{n}(z,m)=\theta _{n}(-z,m)}
  • θ s ( z , m ) = θ s ( z , m ) {\displaystyle \theta _{s}(z,m)=-\theta _{s}(-z,m)}

Aplicaciones disponibles

  • NetvilleThetaC[z,m], NevilleThetaD[z,m], NevilleThetaN[z,m] y NevilleThetaS[z,m] son funciones integradas de Mathematica.[6]

Referencias

  1. Abramowitz and Stegun, pp. 578-579
  2. Neville (1944)
  3. The Mathematical Functions Site
  4. The Mathematical Functions Site
  5. a b Olver, F. W. J., ed. (22 de diciembre de 2017). «NIST Digital Library of Mathematical Functions (Release 1.0.17)». National Institute of Standards and Technology. Consultado el 26 de febrero de 2018. 
  6. «Neville theta function: Primary definition». 

Bibliografía

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Neville, E. H. (Eric Harold) (1944). Jacobian Elliptic Functions. Oxford Clarendon Press. 

Enlaces externos

  • Weisstein, Eric W. «Neville Theta Functions». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. 
Control de autoridades
  • Proyectos Wikimedia
  • Wd Datos: Q19514367
  • Wd Datos: Q19514367