Catalanin vakio

Catalanin vakio G määritellään matematiikassa

G = β ( 2 ) = n = 0 ( 1 ) n ( 2 n + 1 ) 2 = 1 1 2 1 3 2 + 1 5 2 1 7 2 + {\displaystyle G=\beta (2)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}-{\frac {1}{7^{2}}}+\cdots } ,

jossa β {\displaystyle \beta } on Dirichlet'n betafunktio.

Sen likiarvo on

G 0,915 965594177219015054603514932 {\displaystyle G\approx 0{,}915965594177219015054603514932} . [1]

Ei tiedetä, onko Catalanin vakio rationaalinen vai irrationaalinen.

Catalanin vakio on nimetty belgialaisen matemaatikon Eugène Charles Catalanin mukaan.

Integraaleja

G = 0 1 0 1 1 1 + x 2 y 2 d x d y {\displaystyle G=\int _{0}^{1}\int _{0}^{1}{\frac {1}{1+x^{2}y^{2}}}\,dx\,dy\!}
G = 0 1 ln t 1 + t 2 d t {\displaystyle G=-\int _{0}^{1}{\frac {\ln t}{1+t^{2}}}\,dt\!}
G = 0 π / 4 t sin t cos t d t {\displaystyle G=\int _{0}^{\pi /4}{\frac {t}{\sin t\cos t}}\;dt\!}
G = 1 4 π / 2 π / 2 t sin t d t {\displaystyle G={\frac {1}{4}}\int _{-\pi /2}^{\pi /2}{\frac {t}{\sin t}}\;dt\!}
G = 0 π / 4 ln ( cot ( t ) ) d t {\displaystyle G=\int _{0}^{\pi /4}\ln(\cot(t))\,dt\!}
G = 1 2 0 t cosh t d t {\displaystyle G={\tfrac {1}{2}}\int _{0}^{\infty }{\frac {t}{\cosh t}}\,dt\;}
G = 0 arctan ( e t ) d t {\displaystyle G=\int _{0}^{\infty }\arctan(e^{-t})\,dt\!}
G = 0 1 arctan t t d t . {\displaystyle G=\int _{0}^{1}{\frac {\arctan t}{t}}\,dt.\!}
G = 1 2 0 1 K ( t ) d t {\displaystyle G={\frac {1}{2}}\int _{0}^{1}\mathrm {K} (t)\,dt\!}

missä K(t) on täydellinen elliptinen integraali.

Äärettömiä sarjoja

G = 1 16 n = 1 ( n + 1 ) 3 n 1 4 n ζ ( n + 2 )   . {\displaystyle G={\frac {1}{16}}\sum _{n=1}^{\infty }(n+1){\frac {3^{n}-1}{4^{n}}}\zeta (n+2)\ .}


G = 1 64 n = 1 ( 1 ) n + 1 2 8 n ( 40 n 2 24 n + 3 ) ( 2 n ) ! 3 n ! 2 n 3 ( 2 n 1 ) ( 4 n ) ! 2   . {\displaystyle G={\frac {1}{64}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}\cdot 2^{8n}\cdot (40n^{2}-24n+3)\cdot (2n)!^{3}\cdot n!^{2}}{n^{3}\cdot (2n-1)\cdot (4n)!^{2}}}\ .}


G = 3 n = 0 1 2 4 n ( 1 2 ( 8 n + 2 ) 2 + 1 2 2 ( 8 n + 3 ) 2 1 2 3 ( 8 n + 5 ) 2 + 1 2 3 ( 8 n + 6 ) 2 1 2 4 ( 8 n + 7 ) 2 + 1 2 ( 8 n + 1 ) 2 ) 2 n = 0 1 2 12 n ( 1 2 4 ( 8 n + 2 ) 2 + 1 2 6 ( 8 n + 3 ) 2 1 2 9 ( 8 n + 5 ) 2 1 2 10 ( 8 n + 6 ) 2 1 2 12 ( 8 n + 7 ) 2 + 1 2 3 ( 8 n + 1 ) 2 ) {\displaystyle {\begin{aligned}G&=3\sum _{n=0}^{\infty }{\frac {1}{2^{4n}}}\left(-{\frac {1}{2(8n+2)^{2}}}+{\frac {1}{2^{2}(8n+3)^{2}}}-{\frac {1}{2^{3}(8n+5)^{2}}}+{\frac {1}{2^{3}(8n+6)^{2}}}-{\frac {1}{2^{4}(8n+7)^{2}}}+{\frac {1}{2(8n+1)^{2}}}\right)\\&{}\quad -2\sum _{n=0}^{\infty }{\frac {1}{2^{12n}}}\left({\frac {1}{2^{4}(8n+2)^{2}}}+{\frac {1}{2^{6}(8n+3)^{2}}}-{\frac {1}{2^{9}(8n+5)^{2}}}-{\frac {1}{2^{10}(8n+6)^{2}}}-{\frac {1}{2^{12}(8n+7)^{2}}}+{\frac {1}{2^{3}(8n+1)^{2}}}\right)\end{aligned}}}


G = 1 8 π log ( 2 + 3 ) + 3 8 n = 0 ( n ! ) 2 ( 2 n ) ! ( 2 n + 1 ) 2 . {\displaystyle G={\tfrac {1}{8}}\pi \log(2+{\sqrt {3}})+{\tfrac {3}{8}}\sum _{n=0}^{\infty }{\frac {(n!)^{2}}{(2n)!(2n+1)^{2}}}.}
Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.