TLE2

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.

Cet article est orphelin. Moins de trois articles lui sont liés ().

Vous pouvez aider en ajoutant des liens vers [[TLE2]] dans les articles relatifs au sujet.

TLE2
Présentation
Type

modifier - modifier le code - modifier WikidataDocumentation du modèle

La protéine de renforcement de type transductine 2 est une protéine qui est codée par le gène TLE2 chez l’homme[1],[2].

Interactions

Il a été démontré que TLE2 interagit avec TLE1 [3] et HES1[3] .

Notes et références

  1. « Epithelial expression and chromosomal location of human TLE genes: implications for notch signaling and neoplasia », Genomics, vol. 31, no 1,‎ , p. 58–64 (PMID 8808280, DOI 10.1006/geno.1996.0009)
  2. « Entrez Gene: TLE2 transducin-like enhancer of split 2 (E(sp1) homolog, Drosophila) »
  3. a et b Grbavec, Lo R, Liu Y et Stifani S, « Transducin-like Enhancer of split 2, a mammalian homologue of Drosophila Groucho, acts as a transcriptional repressor, interacts with Hairy/Enhancer of split proteins, and is expressed during neuronal development », Eur. J. Biochem., Allemagne, vol. 258, no 2,‎ , p. 339–49 (ISSN 0014-2956, PMID 9874198, DOI 10.1046/j.1432-1327.1998.2580339.x)

Bibliographie

  • S. Stifani, CM. Blaumueller, NJ. Redhead, et al, « Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. », Nat. Genet., vol. 2, no 2,‎ , p. 119–27 (PMID 1303260, DOI 10.1038/ng1092-119)
  • H. Miyasaka H, BK. Choudhury, EW. Hou, SS. Li, « Molecular cloning and expression of mouse and human cDNA encoding AES and ESG proteins with strong similarity to Drosophila enhancer of split groucho protein. », Eur. J. Biochem., vol. 216, no 1,‎ , p. 343–52 (PMID 8365415, DOI 10.1111/j.1432-1033.1993.tb18151.x)
  • A. Palaparti, A. Baratz, S. Stifani, « The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. », J. Biol. Chem., vol. 272, no 42,‎ , p. 26604–10 (PMID 9334241, DOI 10.1074/jbc.272.42.26604)
  • D. Grbavec, R. Lo, Y. Liu, et al, « Groucho/transducin-like enhancer of split (TLE) family members interact with the yeast transcriptional co-repressor SSN6 and mammalian SSN6-related proteins: implications for evolutionary conservation of transcription repression mechanisms. », Biochem. J., vol. 337, no 1,‎ , p. 13–7 (PMID 9854018, PMCID 1219929, DOI 10.1042/0264-6021:3370013)
  • D. Grbavec, R. Lo, Y. Liu, S. Stifani, « Transducin-like Enhancer of split 2, a mammalian homologue of Drosophila Groucho, acts as a transcriptional repressor, interacts with Hairy/Enhancer of split proteins, and is expressed during neuronal development. », Eur. J. Biochem., vol. 258, no 2,‎ , p. 339–49 (PMID 9874198, DOI 10.1046/j.1432-1327.1998.2580339.x)
  • B. Ren, KJ. Chee, TH. Kim, T. Maniatis, « PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. », Genes Dev., vol. 13, no 1,‎ , p. 125–37 (PMID 9887105, PMCID 316372, DOI 10.1101/gad.13.1.125)
  • A. Javed, B. Guo, S. Hiebert, et al, « Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. », J. Cell Sci., vol. 113, no 12,‎ , p. 2221–31 (PMID 10825294)
  • H. Brantjes, J. Roose, M. van De Wetering, H. Clevers, « All Tcf HMG box transcription factors interact with Groucho-related co-repressors. », Nucleic Acids Res., vol. 29, no 7,‎ , p. 1410–9 (PMID 11266540, PMCID 31284, DOI 10.1093/nar/29.7.1410)
  • A. Dintilhac, J. Bernués, « HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. », J. Biol. Chem., vol. 277, no 9,‎ , p. 7021–8 (PMID 11748221, DOI 10.1074/jbc.M108417200, lire en ligne)
  • RL. Strausberg, EA. Feingold, LH. Grouse, et al, « Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. », Proc. Natl. Acad. Sci. U.S.A., vol. 99, no 26,‎ , p. 16899–903 (PMID 12477932, PMCID 139241, DOI 10.1073/pnas.242603899, Bibcode 2002PNAS...9916899M)
  • T. Ota, Y. Suzuki, T. Nishikawa, et al, « Complete sequencing and characterization of 21,243 full-length human cDNAs. », Nat. Genet., vol. 36, no 1,‎ , p. 40–5 (PMID 14702039, DOI 10.1038/ng1285)
  • J. Grimwood, LA. Gordon, A. Olsen, et al, « The DNA sequence and biology of human chromosome 19. », Nature, vol. 428, no 6982,‎ , p. 529–35 (PMID 15057824, DOI 10.1038/nature02399, Bibcode 2004Natur.428..529G)
  • DS. Gerhard, L. Wagner, EA. Feingold, et al, « The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). », Genome Res., vol. 14, no 10B,‎ , p. 2121–7 (PMID 15489334, PMCID 528928, DOI 10.1101/gr.2596504)
  • JF. Rual, K. Venkatesan, T. Hao, et al, « Towards a proteome-scale map of the human protein-protein interaction network. », Nature, vol. 437, no 7062,‎ , p. 1173–8 (PMID 16189514, DOI 10.1038/nature04209, Bibcode 2005Natur.437.1173R)
  • LA. Higa, M. Wu, T. Ye, et al, « CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. », Nat. Cell Biol., vol. 8, no 11,‎ , p. 1277–83 (PMID 17041588, DOI 10.1038/ncb1490)

Liens externes

  • Ressources relatives à la santéVoir et modifier les données sur Wikidata :
    • Héritage mendélien chez l'humain
    • Héritage mendélien chez l'humain
  • icône décorative Portail de la biologie cellulaire et moléculaire