3j記号

ウィグナー3j記号あるいは3jm記号は、クレブシュ-ゴルダン係数を用いて次のように表される係数である。

( j 1 j 2 j 3 m 1 m 2 m 3 ) ( 1 ) j 1 j 2 m 3 2 j 3 + 1 j 1 m 1 j 2 m 2 | j 3 ( m 3 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\equiv {\frac {(-1)^{j_{1}-j_{2}-m_{3}}}{\sqrt {2j_{3}+1}}}\langle j_{1}m_{1}j_{2}m_{2}|j_{3}\,(-m_{3})\rangle .}

逆変換の関係式

j1 - j2 - m3が整数であることと、 m 3 m 3 {\displaystyle m_{3}\rightarrow -m_{3}} という変換に注意すると、上記の式と逆にクレブシュ-ゴルダン係数は次のように3j記号で表される。

j 1 m 1 j 2 m 2 | j 3 m 3 = ( 1 ) j 1 j 2 + m 3 2 j 3 + 1 ( j 1 j 2 j 3 m 1 m 2 m 3 ) . {\displaystyle \langle j_{1}m_{1}j_{2}m_{2}|j_{3}m_{3}\rangle =(-1)^{j_{1}-j_{2}+m_{3}}{\sqrt {2j_{3}+1}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&-m_{3}\end{pmatrix}}.}

対称性

3j記号の対称性は、クレブシュ-ゴルダン係数よりも便利である。3j記号は、列の偶置換に対して不変である。

( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 2 j 3 j 1 m 2 m 3 m 1 ) = ( j 3 j 1 j 2 m 3 m 1 m 2 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}={\begin{pmatrix}j_{2}&j_{3}&j_{1}\\m_{2}&m_{3}&m_{1}\end{pmatrix}}={\begin{pmatrix}j_{3}&j_{1}&j_{2}\\m_{3}&m_{1}&m_{2}\end{pmatrix}}.}

奇置換では、位相因子が現れる。

( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 1 + j 2 + j 3 ( j 2 j 1 j 3 m 2 m 1 m 3 ) = ( 1 ) j 1 + j 2 + j 3 ( j 1 j 3 j 2 m 1 m 3 m 2 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{2}&j_{1}&j_{3}\\m_{2}&m_{1}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{3}&j_{2}\\m_{1}&m_{3}&m_{2}\end{pmatrix}}.}

量子数mの符号の反転に対しても、位相因子が現れる。

( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 1 + j 2 + j 3 ( j 1 j 2 j 3 m 1 m 2 m 3 ) . {\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\-m_{1}&-m_{2}&-m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}.}

選択則

ウィグナーの3j記号は、次の関係式を全て満たさない限り、0となる。

m 1 + m 2 + m 3 = 0 {\displaystyle m_{1}+m_{2}+m_{3}=0\,}
j 1 + j 2 + j 3 {\displaystyle j_{1}+j_{2}+j_{3}\,} が整数となる
| m i | j i {\displaystyle |m_{i}|\leq j_{i}}
| j 1 j 2 | j 3 j 1 + j 2 {\displaystyle |j_{1}-j_{2}|\leq j_{3}\leq j_{1}+j_{2}} .

スカラー不変性

3j記号と3つの回転状態の積の、mの組み合わせに対する以下の和

m 1 = j 1 j 1 m 2 = j 2 j 2 m 3 = j 3 j 3 | j 1 m 1 | j 2 m 2 | j 3 m 3 ( j 1 j 2 j 3 m 1 m 2 m 3 ) , {\displaystyle \sum _{m_{1}=-j_{1}}^{j_{1}}\sum _{m_{2}=-j_{2}}^{j_{2}}\sum _{m_{3}=-j_{3}}^{j_{3}}|j_{1}m_{1}\rangle |j_{2}m_{2}\rangle |j_{3}m_{3}\rangle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}},}

は、回転に対して不変である。

直交性

( 2 j + 1 ) m 1 m 2 ( j 1 j 2 j m 1 m 2 m ) ( j 1 j 2 j m 1 m 2 m ) = δ j j δ m m . {\displaystyle (2j+1)\sum _{m_{1}m_{2}}{\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}&m_{2}&m\end{pmatrix}}{\begin{pmatrix}j_{1}&j_{2}&j'\\m_{1}&m_{2}&m'\end{pmatrix}}=\delta _{jj'}\delta _{mm'}.}
j m ( 2 j + 1 ) ( j 1 j 2 j m 1 m 2 m ) ( j 1 j 2 j m 1 m 2 m ) = δ m 1 m 1 δ m 2 m 2 . {\displaystyle \sum _{jm}(2j+1){\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}&m_{2}&m\end{pmatrix}}{\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}'&m_{2}'&m\end{pmatrix}}=\delta _{m_{1}m_{1}'}\delta _{m_{2}m_{2}'}.}


関連項目

文献

  • L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
  • D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
  • A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Princeton, 1960.
  • D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.
  • E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).

外部リンク

  • Anthony Stone’s Wigner coefficient calculator (Gives exact answer)
  • Clebsch-Gordan, 3-j and 6-j Coefficient Web Calculator (Numerical)
  • 369j-symbol calculator at the Plasma Laboratory of Weizmann Institute of Science (Numerical)